Elimination Method of Systems of Linear Equations Date: \qquad Period: \qquad

Focus Standards: 8.EE.B. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations.
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Student Outcomes

- Students learn the elimination method for solving a system of linear equations.
- Students use properties of rational numbers to find a solution to a system, if it exists, through computation using substitution and elimination methods.

Classwork

Example 1 Use what you noticed about adding equivalent expressions to solve the following system by elimination.

$$
\left\{\begin{array}{l}
6 x-5 y=21 \\
2 x+5 y=-5
\end{array}\right.
$$

Example 2

Solve the following system by elimination.
$\{-2 x+7 y=5$
$\{4 x-2 y=14$

Example 3

Solve the following system by elimination.
$\left\{\begin{array}{l}7 x-5 y=-2 \\ 3 x-3 y=7\end{array}\right.$

Exercises

Each of the following systems has a solution. Determine the solution to the system by eliminating one of the variables. Verify the solution using the graph of the system.

1. $\left\{\begin{array}{l}6 x-7 y=-10 \\ 3 x+7 y=-8\end{array}\right.$
2. $\left\{\begin{array}{l}x-4 y=7 \\ 5 x+9 y=6\end{array}\right.$
3. $\left\{\begin{array}{c}2 x-3 y=-5 \\ 3 x+5 y=1\end{array}\right.$

Problem Set - Determine the solution, if it exists, for each system of linear equations. Verify your solution on the coordinate plane.

1. $\left\{\frac{1}{2} x+5=y\right.$

$$
2 x+y=1
$$

2. $\left\{\begin{array}{c}9 x+2 y=9 \\ -3 x+y=2\end{array}\right.$
3. $\left\{\begin{array}{l}y=2 x-2 \\ 2 y=4 x-4\end{array}\right.$
4. $\left\{\begin{array}{l}8 x+5 y=19 \\ -8 x+y=-1\end{array}\right.$
5. $\left\{\begin{array}{l}x+3=y \\ 3 x+4 y=\end{array}\right.$
$3 x+4 y=7$
6. $\left\{\begin{array}{l}y=3 x+2 \\ 4 y=12+1\end{array}\right.$
7. $\left\{\begin{array}{c}4 x-3 y=16 \\ -2 x+4 y=-2\end{array}\right.$
8. $\left\{\begin{array}{l}2 x+2 y=4 \\ 12-3 x=3 y\end{array}\right.$
9. $\left\{\begin{array}{l}y=-2 x+6 \\ 3 y=x-3\end{array}\right.$
. $\left\{\begin{array}{l}y=x-3\end{array}\right.$
10. $\left\{\begin{array}{l}y=5 x-1 \\ 10 x=2 y+2\end{array}\right.$
11. $\left\{\begin{array}{l}3 x-5 y=17 \\ 6 x+5 y=10\end{array}\right.$
12. $\left\{\begin{array}{l}y=\frac{4}{3} x-9 \\ y=x+3\end{array}\right.$
13. $\left\{\begin{array}{c}4 x-7 y=11 \\ x+2 y=10\end{array}\right.$
$\{21 x+14 y=7$
14. $\left\{\begin{array}{l}212 x+8 y=16\end{array}\right.$
